监控linux性能命令

大彬大约 8 分钟

监控linux性能命令

top

按大写的 F 或 O 键,然后按 a-z 可以将进程按照相应的列进行排序, 然后回车。而大写的 R 键可以将当前的排序倒转
列名含义
PID进程id
PPID父进程id
RUSERReal user name
UID进程所有者的用户id
USER进程所有者的用户名
GROUP进程所有者的组名
TTY启动进程的终端名。不是从终端启动的进程则显示为 ?
PR优先级
NInice值。负值表示高优先级,正值表示低优先级
P最后使用的CPU,仅在多CPU环境下有意义
%CPU上次更新到现在的CPU时间占用百分比
TIME进程使用的CPU时间总计,单位秒
TIME+进程使用的CPU时间总计,单位1/100秒
%MEM进程使用的物理内存百分比
VIRT进程使用的虚拟内存总量,单位kb。VIRT=SWAP+RES
SWAP进程使用的虚拟内存中,被换出的大小,单位kb。
RES进程使用的、未被换出的物理内存大小,单位kb。RES=CODE+DATA
CODE可执行代码占用的物理内存大小,单位kb
DATA可执行代码以外的部分(数据段+栈)占用的物理内存大小,单位kb
SHR共享内存大小,单位kb
nFLT页面错误次数
nDRT最后一次写入到现在,被修改过的页面数。
S进程状态。D=不可中断的睡眠状态,R=运行,S=睡眠,T=跟踪/停止,Z=僵尸进程
COMMAND命令名/命令行
WCHAN若该进程在睡眠,则显示睡眠中的系统函数名
Flags任务标志,参考 sched.h

dmesg,查看系统日志

dmesg

iostat,磁盘IO情况监控

iostat -xz 1

#r/s, w/s, rkB/s, wkB/s:分别表示每秒读写次数和每秒读写数据量(千字节)。读写量过大,可能会引起性能问题。
#await:IO操作的平均等待时间,单位是毫秒。这是应用程序在和磁盘交互时,需要消耗的时间,包括IO等待和实际操作的耗时。如果这个数值过大,可能是硬件设备遇到了瓶颈或者出现故障。
#avgqu-sz:向设备发出的请求平均数量。如果这个数值大于1,可能是硬件设备已经饱和(部分前端硬件设备支持并行写入)。
#%util:设备利用率。这个数值表示设备的繁忙程度,经验值是如果超过60,可能会影响IO性能(可以参照IO操作平均等待时间)。如果到达100%,说明硬件设备已经饱和。
#如果显示的是逻辑设备的数据,那么设备利用率不代表后端实际的硬件设备已经饱和。值得注意的是,即使IO性能不理想,也不一定意味这应用程序性能会不好,可以利用诸如预读取、写缓存等策略提升应用性能。

free,内存使用情况

free -m

eg:

     total       used       free     shared    buffers     cached
Mem:          1002        769        232          0         62        421
-/+ buffers/cache:          286        715
Swap:          1153          0       1153

第一部分Mem行:
total 内存总数: 1002M
used 已经使用的内存数: 769M
free 空闲的内存数: 232M
shared 当前已经废弃不用,总是0
buffers Buffer 缓存内存数: 62M
cached Page 缓存内存数:421M

关系:total(1002M) = used(769M) + free(232M)

第二部分(-/+ buffers/cache):
(-buffers/cache) used内存数:286M (指的第一部分Mem行中的used – buffers – cached)
(+buffers/cache) free内存数: 715M (指的第一部分Mem行中的free + buffers + cached)

可见-buffers/cache反映的是被程序实实在在吃掉的内存,而+buffers/cache反映的是可以挪用的内存总数.

第三部分是指交换分区

sar,查看网络吞吐状态

#sar命令在这里可以查看网络设备的吞吐率。在排查性能问题时,可以通过网络设备的吞吐量,判断网络设备是否已经饱和
sar -n DEV 1

#
#sar命令在这里用于查看TCP连接状态,其中包括:
#active/s:每秒本地发起的TCP连接数,既通过connect调用创建的TCP连接;
#passive/s:每秒远程发起的TCP连接数,即通过accept调用创建的TCP连接;
#retrans/s:每秒TCP重传数量;
#TCP连接数可以用来判断性能问题是否由于建立了过多的连接,进一步可以判断是主动发起的连接,还是被动接受的连接。TCP重传可能是因为网络环境恶劣,或者服务器压力过大导致丢包
sar -n TCP,ETCP 1

vmstat, 给定时间监控CPU使用率, 内存使用, 虚拟内存交互, IO读写

#2表示每2秒采集一次状态信息, 1表示只采集一次(忽略既是一直采集)
vmstat 2 1

eg:
r b swpd free buff cache si so bi bo in cs us sy id wa
1 0 0 3499840 315836 3819660 0 0 0 1 2 0 0 0 100 0
0 0 0 3499584 315836 3819660 0 0 0 0 88 158 0 0 100 0
0 0 0 3499708 315836 3819660 0 0 0 2 86 162 0 0 100 0
0 0 0 3499708 315836 3819660 0 0 0 10 81 151 0 0 100 0
1 0 0 3499732 315836 3819660 0 0 0 2 83 154 0 0 100 0
  • r 表示运行队列(就是说多少个进程真的分配到CPU),我测试的服务器目前CPU比较空闲,没什么程序在跑,当这个值超过了CPU数目,就会出现CPU瓶颈了。这个也和top的负载有关系,一般负载超过了3就比较高,超过了5就高,超过了10就不正常了,服务器的状态很危险。top的负载类似每秒的运行队列。如果运行队列过大,表示你的CPU很繁忙,一般会造成CPU使用率很高。
  • b 表示阻塞的进程,这个不多说,进程阻塞,大家懂的。
  • swpd 虚拟内存已使用的大小,如果大于0,表示你的机器物理内存不足了,如果不是程序内存泄露的原因,那么你该升级内存了或者把耗内存的任务迁移到其他机器。
  • free 空闲的物理内存的大小,我的机器内存总共8G,剩余3415M。
  • buff Linux/Unix系统是用来存储,目录里面有什么内容,权限等的缓存,我本机大概占用300多M
  • cache cache直接用来记忆我们打开的文件,给文件做缓冲,我本机大概占用300多M(这里是Linux/Unix的聪明之处,把空闲的物理内存的一部分拿来做文件和目录的缓存,是为了提高 程序执行的性能,当程序使用内存时,buffer/cached会很快地被使用。)
  • si 每秒从磁盘读入虚拟内存的大小,如果这个值大于0,表示物理内存不够用或者内存泄露了,要查找耗内存进程解决掉。我的机器内存充裕,一切正常。
  • so 每秒虚拟内存写入磁盘的大小,如果这个值大于0,同上。
  • bi 块设备每秒接收的块数量,这里的块设备是指系统上所有的磁盘和其他块设备,默认块大小是1024byte,我本机上没什么IO操作,所以一直是0,但是我曾在处理拷贝大量数据(2-3T)的机器上看过可以达到140000/s,磁盘写入速度差不多140M每秒
  • bo 块设备每秒发送的块数量,例如我们读取文件,bo就要大于0。bi和bo一般都要接近0,不然就是IO过于频繁,需要调整。
  • in 每秒CPU的中断次数,包括时间中断
  • cs 每秒上下文切换次数,例如我们调用系统函数,就要进行上下文切换,线程的切换,也要进程上下文切换,这个值要越小越好,太大了,要考虑调低线程或者进程的数目,例如在apache和nginx这种web服务器中,我们一般做性能测试时会进行几千并发甚至几万并发的测试,选择web服务器的进程可以由进程或者线程的峰值一直下调,压测,直到cs到一个比较小的值,这个进程和线程数就是比较合适的值了。系统调用也是,每次调用系统函数,我们的代码就会进入内核空间,导致上下文切换,这个是很耗资源,也要尽量避免频繁调用系统函数。上下文切换次数过多表示你的CPU大部分浪费在上下文切换,导致CPU干正经事的时间少了,CPU没有充分利用,是不可取的。
  • us 用户CPU时间,我曾经在一个做加密解密很频繁的服务器上,可以看到us接近100,r运行队列达到80(机器在做压力测试,性能表现不佳)。
  • sy 系统CPU时间,如果太高,表示系统调用时间长,例如是IO操作频繁。
  • id 空闲 CPU时间,一般来说,id + us + sy = 100,一般我认为id是空闲CPU使用率,us是用户CPU使用率,sy是系统CPU使用率。
Loading...